Data Science

Intro to data science with Python

Convert Jupyter Notebook to static HTML: $ jupyter nbconvert --to html NOTEBOOK-NAME.ipynb


import os

import pandas as pd
data_dir = "./data/titanic"
d_test = os.path.join(data_dir, "test.csv")
d_train = os.path.join(data_dir, "train.csv")
df = pd.read_csv(d_train)
df
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
... ... ... ... ... ... ... ... ... ... ... ... ...
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
887 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

891 rows × 12 columns

Question

Predict who would survive and who won’t

Explore the data

# rows, columns
df.shape
(891, 12)
# bits of data (rows x columns)
df.size
10692
# shows summary of numerical data types
df.describe()
PassengerId Survived Pclass Age SibSp Parch Fare
count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
df.info()

# dtype of "object" means column is incomplete (missing value) and datatype cannot be determined
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
df.sample()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
368 369 1 3 Jermyn, Miss. Annie female NaN 0 0 14313 7.75 NaN Q
df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')

Accessing pandas dataframe columns

df["Fare"] = 0
df.sample()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
250 251 0 3 Reed, Mr. James George male NaN 0 0 362316 0 NaN S

Delete a column

del df["Cabin"]
df.sample()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Embarked
699 700 0 3 Humblen, Mr. Adolf Mathias Nicolai Olsen male 42.0 0 0 348121 0 S
# reset dataframe
df = pd.read_csv(d_train)

Crosstab, countplot, factorplot

import seaborn as sns
df.sample()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
79 80 1 3 Dowdell, Miss. Elizabeth female 30.0 0 0 364516 12.475 NaN S

Crosstab

pd.crosstab(df["Sex"], df["Survived"])
Survived 0 1
Sex
female 81 233
male 468 109
pd.crosstab(df["Pclass"], df["Survived"])
Survived 0 1
Pclass
1 80 136
2 97 87
3 372 119

Countplot - visualization

ax = sns.countplot(x="Sex", hue="Survived", palette="Set1", data=df)
ax.set(title="Survivors according to Sex", xlabel="Sex", ylabel="Total")
[Text(0.5, 1.0, 'Survivors according to Sex'),
 Text(0.5, 0, 'Sex'),
 Text(0, 0.5, 'Total')]

Factorplot - looking at multiple columns

sns.factorplot(x="Pclass", y="Survived", hue="Sex", data=df, aspect=0.9, size=3.5)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[20], line 1
----> 1 sns.factorplot(x="Pclass", y="Survived", hue="Sex", data=df, aspect=0.9, size=3.5)

AttributeError: module 'seaborn' has no attribute 'factorplot'

Factorplot has since been changed to catplot. Specifying the plot “kind” parameter to “point” yields same output as “factorplot”

# sns.factorplot(x="Embarked", y="Survived", hue="Sex", data=df, aspect=0.9, height=3.5)
sns.catplot(kind="point", x="Embarked", y="Survived", hue="Sex", data=df, aspect=0.9, height=3.5)
/opt/conda/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight
  self._figure.tight_layout(*args, **kwargs)


Variable Types

Dependent vs Independent variable types

  • Categorical
    • Nominal - Any number of categories, order not important (eg male or female)
    • Ordinal - Order is important (eg educational background)
  • Numerical
    • Discrete - Count, dice throwing, etc.
    • Continuous - Height of a person, weight, height of a tree, speed of a car.

4 Cs of data science

  1. Correcting - Outliers, data seems incorrect
  2. Completing - NULL values
  3. Creating - Feature engineering, use existing features to create new ones that may be helpful
  4. Converting - male = 1, female = 0